Extensions 1→N→G→Q→1 with N=C23xC4 and Q=D7

Direct product G=NxQ with N=C23xC4 and Q=D7
dρLabelID
D7xC23xC4224D7xC2^3xC4448,1366

Semidirect products G=N:Q with N=C23xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C23xC4):1D7 = C23.28D28φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):1D7448,747
(C23xC4):2D7 = C22xD14:C4φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):2D7448,1240
(C23xC4):3D7 = C2xC4xC7:D4φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):3D7448,1241
(C23xC4):4D7 = C2xC23.23D14φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):4D7448,1242
(C23xC4):5D7 = C2xC28:7D4φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):5D7448,1243
(C23xC4):6D7 = C24.72D14φ: D7/C7C2 ⊆ Aut C23xC4112(C2^3xC4):6D7448,1244
(C23xC4):7D7 = C23xD28φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):7D7448,1367
(C23xC4):8D7 = C22xC4oD28φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4):8D7448,1368

Non-split extensions G=N.Q with N=C23xC4 and Q=D7
extensionφ:Q→Aut NdρLabelID
(C23xC4).1D7 = C2xC28.55D4φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).1D7448,740
(C23xC4).2D7 = C2xC14.C42φ: D7/C7C2 ⊆ Aut C23xC4448(C2^3xC4).2D7448,742
(C23xC4).3D7 = C4xC23.D7φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).3D7448,743
(C23xC4).4D7 = C24.62D14φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).4D7448,744
(C23xC4).5D7 = C24.63D14φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).5D7448,745
(C23xC4).6D7 = C22xDic7:C4φ: D7/C7C2 ⊆ Aut C23xC4448(C2^3xC4).6D7448,1236
(C23xC4).7D7 = C24.4Dic7φ: D7/C7C2 ⊆ Aut C23xC4112(C2^3xC4).7D7448,741
(C23xC4).8D7 = C23.27D28φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).8D7448,746
(C23xC4).9D7 = C22xC4.Dic7φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).9D7448,1234
(C23xC4).10D7 = C2xC28.48D4φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).10D7448,1237
(C23xC4).11D7 = C22xC4:Dic7φ: D7/C7C2 ⊆ Aut C23xC4448(C2^3xC4).11D7448,1238
(C23xC4).12D7 = C2xC23.21D14φ: D7/C7C2 ⊆ Aut C23xC4224(C2^3xC4).12D7448,1239
(C23xC4).13D7 = C23xDic14φ: D7/C7C2 ⊆ Aut C23xC4448(C2^3xC4).13D7448,1365
(C23xC4).14D7 = C23xC7:C8central extension (φ=1)448(C2^3xC4).14D7448,1233
(C23xC4).15D7 = C22xC4xDic7central extension (φ=1)448(C2^3xC4).15D7448,1235

׿
x
:
Z
F
o
wr
Q
<